Course Type	Course Code	Name of Course	L	Т	Р	Credit
DP	NPHC506	Experimental Physics I	0	0	3	1.5

Cour	Course Objective			
∎]	To familiarize students with basic experiments of electronics;			
•]	To increase observational and analytical power of students.			
Lear	ning Outcomes			
Stude	ents will learn:			
1 I	Basic circuitry of electronics experiments on bread board.			
2 E	Basic physics of working mechanism of each experiment.			
<u> </u>				

3 To enhance experimental capability and instrument handling.

Ex. Number	Title of Experiments	No. of classes	
1	To study the rectification of an alternating voltage source through bridge rectifier		
2	To design a free running (Astable) Multivibrator and hence study transients using 555 timer	2*3	
3	To design a R.C. coupled amplifier and hence to measure its voltage gain	2*3	
4	To determine the Planck's constant and work function of materials by photo-electric effect	1*3	
5	To study of operational amplifier as inverting and non inverting amplifier	2*3	
6	To study wavelength of electron at different accelerating voltages using Bragg condition	1*3	
7	Study of series and parallel connections in solar cell (PV) module	2*3	
8	To verify the existence of discrete atomic energy levels by Frank & Hertz experiment	2*3	
Total (Tentatively 42 hours)			

Text Books:

- An Advanced Course in Practical Physics by D. Chattopadhyay, P. C. Rakshit; New Central Book Agency (P) Ltd., 2007 (8e)
- 2. A Textbook of Advanced Practical Physics by S. K. Ghosh; New Central, 2000 (4e)
- 3. Electronic Principles; A. Malvino and David J. Bates; Mcgraw Higher Ed; 2006.

Reference Books:

- 1. Advanced practical physics for students, by B. L. Worsnop and H. T. Flint; Littlehampton Book Services Ltd., 1951 (9e)
- 2. Advanced Practical Physics, V-I and II by Chauhan and Singh; Pragati Prakashan
- 3. Physical Methods, Instruments and Measurements, Vol. 1-4, Edited by Yuri M. Tsipenyuk; Russian Academy of Sciences, Russia
- 4. Handbook of Physical Measurements, by Judith Hall, Judith Allanson, Karen Gripp, Anne Slavotinek; Oxford, 2e (2006)